4 resultados para Reproductive biology

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the ovary, two new members of the large TGF-beta superfamily of growth factors were discovered in the 1990s. The oocyte was shown to express two closely related growth factors that were named growth differentiation factor 9 (GDF-9) and growth differentiation factor 9B (GDF-9B). Both of these proteins are required for normal ovarian follicle development although their individual significance varies between species. GDF-9 and GDF-9B mRNAs are expressed in the human oocytes from the primary follicle stage onwards. This thesis project was aimed to define the signalling mechanisms utilized by the oocyte secreted GDF-9. We used primary cultures of human granulosa luteal cells (hGL) as our cell model, and recombinant adenovirus-mediated gene transfer in manipulating the TGF-b family signalling cascade molecules in these cells. Overexpression of the constitutively active forms of the seven type I receptors, the activin receptor-like kinases 1-7 (ALK1-7), using recombinant adenoviruses caused a specific activation of either the Smad1 or Smad2 pathway proteins depending on the ALK used. Activation of both Smad1 and Smad2 proteins also stimulated the expression of dimeric inhibin B protein in hGL cells. Treatment with recombinant GDF-9 protein induced the specific activation of the Smad2 pathway and stimulated the expression of inhibin betaB subunit mRNA as well as inhibin B protein secretion in our cell model. Recombinant GDF-9 also activated the Smad3-responsive CAGA-luciferase reported construct, and the GDF-9 response in hGL cells was markedly potentiated upon the overexpression of Alk5 by adenoviral gene transduction. Alk5 overexpression also enhanced the GDF-9 induced inhibin B secretion by these cells. Similarly, in a mouse teratocarcinoma cell line P19, GDF-9 could activate the Smad2/3 pathway, and overexpression of ALK5 in COS7 cells rendered them responsive to GDF-9. Furthermore, transfection of rat granulosa cells with small interfering RNA for ALK5 or overexpression of the inhibitory Smad7 resulted in dose-dependent suppression of GDF-9 effects. In conclusion, this thesis shows that both Smad1 and Smad2 pathways are involved in controlling the regulation of inhibin B secretion. Therefore, in addition to endocrine control of inhibin production by the pituitary gonadotropins, also local paracrine factors within in the ovary, like the oocyte-derived growth factors, may contribute to controlling inhibin secretion. This thesis shows as well that like other TGF-beta family ligands, also GDF-9 signalling is mediated by the canonical type I and type II receptors with serine/threonine kinase activity, and the intracellular transcription factors, the Smads. Although GDF-9 binds to the BMP type II receptor, its downstream actions are specifically mediated by the type I receptor, ALK5, and the Smad2 and Smad3 proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transplantation of isolated islets from cadaver pancreas is a promising possibility for the optimal treatment of type 1 diabetes. The lack of islets is a major problem. Here we have investigated the possibility of generating islets in tissue culture of human pancreatic cells. We first reproduced a previously reported method of in vitro generation of endocrine cells from human adult pancreatic tissue. By tracing the bromodeoxyuridine-labeled cells in differentiated islet buds, we found that the pancreatic progenitor cells represented a subpopulation of cytokeratin 19 (CK19)-positive ductal cells. Serum-free medium and Matrigel overlay were essential for the endocrine differentiation. We then examined the involvement of preexisting islet cells in islet neogenesis. About 6-10% of endocrine cells dedifferentiated and acquired a transitional phenotype by coexpressing CK19. Significant cell proliferation was only observed in CK19-positive cells, but not in chromogranin A-positive endocrine cells. The in vitro-derived human islets were morphologically and functionally immature when compared with normal islets. Their insulin mRNA levels were only 4-5% of that found in fresh human islets, and glucose-stimulated insulin release was 3 times lower than that of control islets. Moreover, some immature endocrine cells coexpressed insulin and glucagon. After transplantation in nude mice, the in vitro-generated islets became mature with one type of hormone per endocrine cell. In addition, we also found that also in both fresh islet transplants many cells coexpressed endocrine markers and ductal marker CK19 as a sign of ductal to endocrine cell transition. Finally, we studied the effects of clinically used immunosuppressive drugs on precursor cell proliferation and differentiation. Mycophenolate mofetil (MMF) severely hampered duct-cell proliferation, and significantly reduced the total DNA content indicating its antiproliferative effect on the precursors. Tacrolimus mainly affected differentiated beta cells by decreasing the insulin content per DNA as well as the proportion of insulin-positive cells. Sirolimus and daclizumab did not show any individual or synergistic side effects suggesting that these drugs are amenable for use in clinical islet transplantation. In summary, we confirm the capacity of endocrine differentiation from progenitors present in the adult human pancreas. The plasticity of differentiated cell types of human pancreas may be a potential mechanism of human pancreas regeneration. Ductal cell differentiation into endocrine cells in transplanted islets may be an important factor in sustaining the long-term function of islet transplants. The immunosuppressive protocol is likely to be an important determinant of long-term clinical islet graft function. Moreover, these results provide new information on the mechanisms of pancreatic islet regeneration and provide the basis for the development of new strategies for the treatment of insulin deficient diabetes mellitus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The area of intensively managed forests, in which required conditions for several liverwort species are seldom found, has expanded over the forest landscape during the last century. Liverworts are very sensitive to habitat changes, because they demand continuously moist microclimate. Consequently, about third of the forest liverworts have been classified as threatened or near threatened in Finland. The general objective of this thesis is to increase knowledge of the reproductive and dispersal strategies of the substrate-specific forest bryophytes. A further aim was to develop recommendations for conservation measures for species inhabiting unstable and stable habitats in forest landscape. Both population ecological and genetic methods have been applied in the research. Anastrophyllum hellerianum inhabits spatially and temporally limited substrate patches, decaying logs, which can be considered as unstable habitats. The results show that asexual reproduction by gemmae is the dominant mode of reproduction, whereas sexual reproduction is considerably infrequent. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal. The combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on a local scale and over long distances, and it compensates for the great propagule losses that take place preceding successful establishment at suitable sites. However, establishment probability of spores may be restricted because of environmental and biological limitations linked to the low success of sexual reproduction. Long-lasting dry seasons are likely to result in a low success of sexual reproduction and decreased release rate of gemmae from the shoots, and consequent fluctuations in population sizes. In the long term, the substratum limitation is likely to restrict population sizes and cause local extinctions, especially in small-sized remnant populations. Contrastingly, larger forest fragments with more natural disturbance dynamics, to which the species is adapted, are pivotal to species survival. Trichocolea tomentella occupies stable spring and mesic habitats in woodland. The relatively small populations are increasingly fragmented with a high risk for extinction for extrinsic reasons. The results show that T. tomentella mainly invests in population persistence by effective clonal growth via forming independent ramets and in competitive ability, and considerably less in sexuality and dispersal potential. The populations possess relatively high levels of genetic diversity regardless of population size and of degree of isolation. Thus, the small-sized populations inhabiting stable habitats should not be neglected when establishing conservation strategies for the species and when considering the habitat protection of small spring sites. Restricted dispersal capacity, also on a relatively small spatial scale, is likely to prevent successful (re-)colonization in the potential habitat patches of recovering forest landscapes. By contrast, random short-range dispersal of detached vegetative fragments within populations at suitable habitat seems to be frequent. Thus, the restoration actions of spring and streamside habitats close to the populations of T. tomentella may contribute to population expansion. That, in turn, decreases the harmful effects of environmental stochasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social groups are common across animal species. The reasons for grouping are straightforward when all individuals gain directly from cooperating. However, the situation becomes more complex when helping entails costs to the personal reproduction of individuals. Kin selection theory has offered a fruitful framework to explain such cooperation by stating that individuals may spread their genes not only through their own reproduction, but also by helping related individuals reproduce. However, kin selection theory also implicitly predicts conflicts when groups consist of non-clonal individuals, i.e. relatedness is less than one. Then, individual interests are not perfectly aligned, and each individual is predicted to favour the propagation of their own genome over others. Social insects provide a solid study system to study the interplay between cooperation and conflict. Breeding systems in social insects range from solitary breeding to eusocial colonies displaying complete division of reproduction between the fertile queen and the sterile worker caste. Within colonies, additional variation is provided by the presence of several reproductive individuals. In many species, the queen mates multiply, which causes the colony to consist of half-sib instead of full-sib offspring. Furthermore, in many species colonies contain multiple breeding queens, which further dilutes relatedness between colony members. Evolutionary biology is thus faced with the challenge to answer why such variation in social structure exists, and what the consequences are on the individual and population level. The main part of this thesis takes on this challenge by investing the dynamics of socially polymorphic ant colonies. The first four chapters investigate the causes and consequences of different social structures, using a combination of field studies, genetic analyses and laboratory experiments. The thesis ends with a theoretical chapter focusing on different social interactions (altruism and spite), and the evolution of harming traits. The main results of the thesis show that social polymorphism has the potential to affect the behaviour and traits of both individuals and colonies. For example, we found that genetic polymorphism may increase the phenotypic variation between individuals in colonies, and that socially polymorphic colonies may show different life history patterns. We also show that colony cohesion may be enhanced even in multiple-queen colonies through patterns of unequal reproduction between queens. However, the thesis also demonstrates that spatial and temporal variation between both populations and environments may affect individual and colony traits, to the degree that results obtained in one place or at one time may not be applicable in other situations. This opens up potential further areas of research to explain these differences.